Mutation tendency of mutator Plasmodium berghei with proofreading-deficient DNA polymerase δ

نویسندگان

  • Hajime Honma
  • Mamoru Niikura
  • Fumie Kobayashi
  • Toshihiro Horii
  • Toshihiro Mita
  • Hiroyoshi Endo
  • Makoto Hirai
چکیده

In this study, we investigated the mutation tendency of a mutator rodent malaria parasite, Plasmodium berghei, with proofreading-deficient DNA polymerase δ. Wild-type and mutator parasites were maintained in mice for over 24 weeks, and the genome-wide accumulated mutations were determined by high-throughput sequencing. The mutator P. berghei had a significant preference for C/G to A/T substitutions; thus, its genome had a trend towards a higher AT content. The mutation rate was influenced by the sequence context, and mutations were markedly elevated at TCT. Some genes mutated repeatedly in replicate passage lines. In particular, knockout mutations of the AP2-G gene were frequent, which conferred strong growth advantages on parasites during the blood stage but at the cost of losing the ability to form gametocytes. This is the first report to demonstrate a biased mutation tendency in malaria parasites, and its results help to promote our basic understanding of Plasmodium genetics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Rodent Malaria Parasites with a High Mutation Rate by Destructing Proofreading Activity of DNA Polymerase δ

Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malar...

متن کامل

Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair...

متن کامل

Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase δ

A novel mutagenesis technique using error-prone DNA polymerase δ (polδ), the disparity mutagenesis model of evolution, has been successfully employed to generate novel microorganism strains with desired traits. However, little else is known about the spectra of mutagenic effects caused by disparity mutagenesis. We evaluated and compared the performance of the polδMKII mutator, which expresses t...

متن کامل

Pools and Pols: Mechanism of a mutator phenotype.

The maintenance of the human genome is dependent upon several cellular processes including DNA replication. Ordinarily, DNA replication is an exceptionally faithful process, with approximately one error occurring for every 10–10 nucleotides (1, 2). High-fidelity replicative DNA polymerases with exonucleolytic proofreading activity, along with DNA mismatch repair machinery, are responsible for a...

متن کامل

Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae

DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε). They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016